Robustness of compound Dirichlet priors for Bayesian inference of branch lengths.

نویسندگان

  • Chi Zhang
  • Bruce Rannala
  • Ziheng Yang
چکیده

We modified the phylogenetic program MrBayes 3.1.2 to incorporate the compound Dirichlet priors for branch lengths proposed recently by Rannala, Zhu, and Yang (2012. Tail paradox, partial identifiability and influential priors in Bayesian branch length inference. Mol. Biol. Evol. 29:325-335.) as a solution to the problem of branch-length overestimation in Bayesian phylogenetic inference. The compound Dirichlet prior specifies a fairly diffuse prior on the tree length (the sum of branch lengths) and uses a Dirichlet distribution to partition the tree length into branch lengths. Six problematic data sets originally analyzed by Brown, Hedtke, Lemmon, and Lemmon (2010. When trees grow too long: investigating the causes of highly inaccurate Bayesian branch-length estimates. Syst. Biol. 59:145-161) are reanalyzed using the modified version of MrBayes to investigate properties of Bayesian branch-length estimation using the new priors. While the default exponential priors for branch lengths produced extremely long trees, the compound Dirichlet priors produced posterior estimates that are much closer to the maximum likelihood estimates. Furthermore, the posterior tree lengths were quite robust to changes in the parameter values in the compound Dirichlet priors, for example, when the prior mean of tree length changed over several orders of magnitude. Our results suggest that the compound Dirichlet priors may be useful for correcting branch-length overestimation in phylogenetic analyses of empirical data sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tail paradox, partial identifiability, and influential priors in Bayesian branch length inference.

Recent studies have observed that Bayesian analyses of sequence data sets using the program MrBayes sometimes generate extremely large branch lengths, with posterior credibility intervals for the tree length (sum of branch lengths) excluding the maximum likelihood estimates. Suggested explanations for this phenomenon include the existence of multiple local peaks in the posterior, lack of conver...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Effects of branch length uncertainty on Bayesian posterior probabilities for phylogenetic hypotheses.

In Bayesian phylogenetics, confidence in evolutionary relationships is expressed as posterior probability--the probability that a tree or clade is true given the data, evolutionary model, and prior assumptions about model parameters. Model parameters, such as branch lengths, are never known in advance; Bayesian methods incorporate this uncertainty by integrating over a range of plausible values...

متن کامل

Gero Walter A Technical Note on the Dirichlet - Multinomial Model

This short note contains an explicit proof of the Dirichlet distribution being the conjugate prior to the Multinomial sample distribution as resulting from the general construction method described, e.g., in Bernardo and Smith (2000). The well-known Dirichlet-Multinomial model is thus shown to fit into the framework of canonical conjugate analysis (Bernardo and Smith 2000, Prop. 5.6, p. 273), w...

متن کامل

Spike-and-Slab Dirichlet Process Mixture Models

In this paper, Spike-and-Slab Dirichlet Process (SS-DP) priors are introduced and discussed for non-parametric Bayesian modeling and inference, especially in the mixture models context. Specifying a spike-and-slab base measure for DP priors combines the merits of Dirichlet process and spike-and-slab priors and serves as a flexible approach in Bayesian model selection and averaging. Computationa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Systematic biology

دوره 61 5  شماره 

صفحات  -

تاریخ انتشار 2012